
N89- 16327
Integrating Automated Structured Analysis and Design

with Ada Programming Support Environments

Alan Hecht and Andy Simmons
Cadre Technologies Inc.

222 Richmond St.
Providence, R.I. 02903

(401) 351-5950

Abstract

Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of
Ada code. Structured analysis is a
methodology that addresses the creation of complete and accurate system specifications. Structured design takes a
specification and derives a plan to decompose the system sub-components, and provides heuristics to optimize the
software design to minimize errors and maintenance. It can also promote the creation of reusable modules. Studies
have shown that most software errors result from poor system specifications, and that these errors also become more
expensive to fm as the development process continues. Structured analysis and design help to uncover errors in the
early stages of development. APSE tools help insure that the code produced is correct, and aid in finding obscure
coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs.

These tools do not address the entire software development process.

This paper will describe how an automated system for structured analysis and design, teamwork@, can be
integrated with an APSE to support software systems development from specification through implementation.
These tools complement each other to help developers improve quality and productivity, as well as to reduce
development and maintenance costs. Complete system documentation and reusable code also result from the use of
these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and
advantages beyond those realized with any of these systems used by themselves.

D.4.2.1

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Introduction

Developing quality software on time and within budget has proven to be a difficult task. Statistics gathered by the
government and private industry have shown that software development projects are difficult to control [Boehm 81 1.
This results in software systems that can be extremely expensive with less than adequate performance.

These problems have fostered several solutions. The U.S. Department of Defense performed an analysis of its
software applications, concentrating on problems inherent with coding and implementation. This analysis resulted
in the development of Ada [DoD 811. Other people were addressing problems associated with software
requirements. The results of this effort has resulted in the development of several software development
methodologies based on the concept of a software lifecycle [DeMarco 78, Page-Jones 80, for example].

The DOD identified a problem specific to the implementation of embedded systems. There were a number of
languages in use and there was potential that this number would continue to grow. The lack of a standard
implementation language resulted in money being spent on new compilers (which were not significantly better),
training and maintenance. The development of the Ada programming language was seen as an answer to this
problem. In addition, the solution would include a programmer's environment, or toolkit, called the "APSE."

APSE

The Ada Programming Support Environment (APSE) was proposed to augment the Ada 1anguagepoD
80, Stennig 811. It includes tools such as the compiler, language sensitive editor, and debugger. These tools are
designed with knowledge about the structure of Ada and are focused on the implementation phase of software
development. The APSE presents a uniform development environment to aid Ada programmers.

APSEs help solve the problems of implementing embedded systems that were recognized by the DOD. A
reduction in software development costs can be realized as a result of making the implementation phase more
efficient. However, the problem still remains that APSEs do not thoroughly address the other phases of software
development.

Software Development Lifecycle

Recent work has focused on gathering statistics from case studies of projects [Ramamoorthy 841. At least half of
the projects had problems which originated in the requirements or functional specification (see Figure 1). To help
put this in perspective, we can view the software development process as divided into five (sometimes overlapping)
phases: analysis, design, implementation, test and verification, and maintenance.

The analysis phase is concerned with understanding what a system is supposed to do. The result is supposed to be
an implementation independent description or abstract view of the system to be developed. The product of analysis
is a requirements specification (sometimes called a functional SpecifKation) that describes the system function and
important constraints.

The design phase addresses how the system is to be implemented. It is concerned with the physical aspects of the
system. The optimal structure of the various software modules and how they interface is determined. Ideally, the
design information should be complete enough to reduce the implementation effort to little more than a translation
to a target programming language.

The implementation phase is concerned with producing executable code. Knowledge of both the design and the
target environment is incorporated to produce the final system software. All the physical aspects of the system are
addressed during implementation.

D.4.2.2

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

r Dosign Error involving
Somrni Compononls

Error in Dosign or
impiomontalion of
Singlo Compononl

Clerical Error

Error Duo to Previous
Miscorrection of an Error

b I I I
10 20 a0

Poroont of Errors Obsorvod

Figure 1: Sources of Errors'.

Information from the previous three phases is used in the testing and verification phase. Test plans can be derived
from specifications and designs [Boehm 841. The testing phase verifies that the software conforms to the
specification and that the code is correct. The best that test and verification techniques can do is prove that a
program is consistent with its specification. They cannot prove that a program meets the user's desires Wulf 803.
This means that extra care must be taken during analysis to insure that the specification is a complete and correct
reflection of what the user really wants. This can be accomplished through methods that support checks for
consistency and clearly communicate system requirements. TeamworklsA supports one such method, and it will be
discussed later in this paper.

Bug fmes and adaptations which result from experience with the software are activities of the maintenance phase.
At this point the software is being used -- the ultimate test Users will come across errors or suggestions as they gain
experience with the software. Maintenance procedures must handle the orderly evolution of the code. They must
insure that changes will not have deleterious effects on the system.

A study by Doehm 841 showed that errors detected later in the development life cycle cost more to fa than errors
detected during analysis (See Figure 2). Figure 1, discussed previously, showed that the majority of errors in a
software project can be traced to requirements and specification problems. These facts illustrate the value of
spending more time at the beginning of a project, performing analysis. This can be diffcult for programmers and
users to accept as both may be anxious to see code being produced -rthy 841. These ideas have only
recently become well understood and brought into practice.

'Adapted from [Ramamoorthy 841

D.4.23

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Relatlve
cost to
Fly Frrnr

I
I

I
I

~ I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I I -. .-.
I
I
I
I

I" 1
I

L - 1 /
-1 i /

I
I
I
I
I

I I
I I
I I
I I
I I
I I
I I
I I
I I

Analyslr I Dedgn I Implementation I

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
Test Maintenance

Phase In Which Error Was Detected and Corrected

Figure 2: Cost of Error Versus When it is Detected2.

Many approaches and methodologies utilize the concept of the software life cycle. In particular, structured
analysis (which refers to several methods [Gane 79, DeMarco 78, Ross 771) addresses the beginning phase of
requirements analysis.

Structured Analysis

Structured analysis views a system from the perspective of the data flowing through it. The function of the system
is described by processes that transform the data flows. Structured analysis takes advantage of information hiding
through successive decomposition (or top down) analysis. This allows attention to be focused on pertinent details
and avoids confusion ftom looking at irrelevant details. As the level of detail increases, the breadth of information is
reduced. The result of structured analysis is a set of related graphical diagrams, process descriptions, and data
definitions. They describe the transformations that need to take place and the data required to meet a system's
functional requirements.

De Marco's approach [DeMarco 781 consists of the following objects: dataflow diagram, process specifications,
and a data dictionaly (See Figure 3).

Data flow diagrams (DFDs) are directed graphs. The arcs represent data, and the nodes (circles or bubbles)
represent processes that transform the data. A process can be further decomposed to a more detailed DFD which
shows the subprocesses and data flows within it. The subprocesses can in turn be decomposed further with another

2Adapted from [Boehm 841

D.4.2.4

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Process Objects

Context-
Diagram

0

1.1

...........
...

........ . . .
-.. ..

I Dataobjects
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

definition

definition

definition

0

definition

Figure 3: Analysis Model Objects

set of DFDs until their functions can be easily understood. Functional primitives are processes which do not need to
be decomposed further. Functional primitives are described by a process specification (or mini-spec). The process
specification can consist of pseudo-code, flowcharts, or structured English. The DFDs model the structure of the
system as a network of interconnected processes composed of functional primitives.

The data dictionary i s a set of entries (definitions) of data flows, data elements, files. and data bases. The data
dictionary enmes are partitioned in a topdown manner. They can be referenced in other data dictionary entries and
in data flow diagrams.

Military standard 2167 [MilStd2167 851 requires that systems be specified in a top down manner using a
structured approach similar to that described above. The high level of process and data abstraction inherent in
structured analysis is compatible with the objectives of the Ada language. Where it is desirable to take an
object-oriented approach to designFooch 86,Cox 841, structured analysis helps to define classes and data
hierarchies or data structure. For procedural approaches, structured analysis works well with structured design.

Structured Design

Structured design addresses the synthesis of a module hierarchy [Page-Jones 801. The principles of cohesion and
coupling are applied to derive a optimal module structure and interfaces. Cohesion is concerned with the grouping
of functionally related processes into a particular module. Coupling addresses the flow of information, or
parameters, passed between modules. Optimal coupling reduces the interfaces of modules, and the resulting
complexity of the software.

D.4.2.5

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Page-Jones' approach page-Jones 801 consists of the following objects: structure charts, module specifications
and a data dictionary.

The structure chart shows the module hierarchy or calling sequence relationship of modules. There is a module
specification for each module shown on the structure chart. The module specifications can be composed of
pseudo-code or a program design language. The data dictionary is like that of structured analysis.

At this stage in the software development lifecycle, after analysis and design have been performed, it is possible to
automatically generate data type declarations Pelkhouche 861, and procedure or subroutine templates.

Automating Structured Analysis and Design

Hardware CAD/CAM systems have contributed to the development a systems with higher levels of complexity,
performance and reliability, at costs previously unattainable through purely manual design efforts. This is sparking
interest in automating the software development process.

Teamwork is a set of automated tools for systems analysis and design. They can support many simultaneous users
working on the same project or even many projects. They take advantage of features provided by the latest
workstation technology, offering complete support of the DeMarco structured analysis techniques and the Page-
Jones structured design techniques. Graphical diagrams are created using syntax-directed editors that incorporate
model building rules. Its interactive graphics package supports a high resolution bit-mapped display, mouse and
keyboard. Modem user interface techniques are used, including a multi-window display and context specific popup
and pull-down menus.

Multiple, simultaneous views of a specification or a design can be displayed by teamworklu (See Figure 4). It
has simple commands for traversing through the various parts of a modeL Model objects may be entered in any
order. The graphics editors allow diagrams to be easily produced and edited. Diagrams as well as components of
diagrams are automatically numbered and indexed. These features eliminate many manual, time consuming tasks.

Project information is retained in a project library, through which individuals can simultaneously share model
information and computer resources. Team members linked over the network can access the same information for
review. Multiple versions of model objects are retained in the library. Team members can independently renumber
and repartition diagrams, which allows exploration of different approaches to describe a system.

Teamwork's consistency checker detects specification errors within and between data flow diagrams, data
dictionary entries, and process specifications, and design errors within and between structure charts and module
specifications. Typical errors and inconsistencies include DFD balancing errors (data flows from one diagram that
do not match data flows to a related diagram) and undefmed data dictionary entries. The consistency checker uses
the semantics and rules of structured analysis and structured design. Checking is performed "on-demand, which
allows the analyst and designer to work top-down, bottom-up, or any other way. It encourages the exploration of
partial models that may be (during the intermediate stages of building the model) incomplete ar incorrect. The
speed and depth of checking in teaInW0rk.b helps produce consistent and correct specifications, which can be used
with the tools provided in an APSE.

D.4.2.6

ORIGINAL PAGE IS
Of POOR QUALITY

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

DO Uhl lO wvo I ROUE-RIGHT
If cannon-poeltlon !I RIWT-EDCE

Then DO.
cannon-posltlon 5 cannon-p
D l E p l q cannon-inage a t ea

Udlt

Figure 4: tt!amWoruSA Desktop

Integration of Teamwork with APSE
Teamwork was designed to allow the information it captures to be utilized for many purposes. These include

packaged specifications, project status reports, configuration management, system documentation, and test plans.
The information is captured as the specification and design are created. As described above, teamwork helps to
insure consistency of the information as a system progresses through these phases. The relationships between the
various representations of processes, data, and modules are recorded in the project library. This information may be
selectively retrieved and reformatted with post processors which can be developed for a variety of software
development tasks, such as the following:

*Producing data type declarations and procedure templates specific to the syntax of any language,

Generating test plans.
Generate formatted requirement documents, such as MIL-STD 2167.

especially Ada.

In addition, by combining an APSE with teamwork, the complete lifecycle documentation can be consistently
maintained, from requirements to code listings. If any change is ma& to any piece of a project, that change can be
reflected in the corresponding parts of the project.

D.4.2.7

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

Conclusion

APSES help reduce some of the problems associated with software development., especially during the
implementation phase. Automated analysis and design environments address the problem associated with poor
specifications and software system structure. Either tool by itself is better than totally manual development. The
combination of all these tools can provide automated support for the entire software development lifecycle, insuring
consistency and reducing mors and developments costs.

D.4.28

Integrating Automated Structured Analysis and Design
with Ada Programming Support Environments

[Belkhouche 861

[Boehm 811

[Boehm 841

[Booch 861

[Cox 841

CDeMarco 781

P O D 801

EDOD 811

[Gane 793

IJVlilStd2167 851

[Page-Jones 801

References

Belkhouche, B., and J.E. Urban.
Direct Implementation of Abstract Data Types from Abstract Specifications.
IEEE Transactions on Software Engineering 549-661, May, 1986.

Boehm, Barry W.
Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Boehm, Barry W.
Verifying and Validating Software Requirements and Design Specifications.
Software , January, 1984.

Booch, G.
Obj ec t-Oriented Development.
IEEE Transactions on Software Engineering :211-221, February, 1986.

Cox, Brad J. .
Mesagelobject Programming: An Evolutionary Change in Programming Technology.
Software 50-61, January, 1984.

DeMarco, Tom.
Structured Analysis and System Specification.
Yourdon Press, New York, 1978.

US Dept. of Defense.
Requirements for Ada Programming Support Environments - Stoneman.
February, 1980

US Dept. of Defense.
Reference Manual for the Ada Programming Language - Proposed Standard Document.
July, 1981

Gane, Chris and Trish Sarson.
Structured Systems Analysis: Tools and Techniques.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1979.

Military Standard - Defense System Software Development DOD-STD-2167.
June, 1985
Page-Jones, M.
The Practical Guide to Structured Systems Design.
Yourdon Press, New York, 1980.

[Ramamoorthy 841
Ramamoorthy, C.V., et. al.
Software Engineering: Problems and Perspectives.
Computer :191-209, October, 1984,

Ross, D. and RE. Schoman Jr.
Structured Analysis for Requirements Definition.
IEEE Transactions on Software Engineering SE-3(1), January, 1977.
V. Stennig et. al.
The Ada Environment A Perspective.
Computer :26-36, June, 1981.

Trends in the Design and Implementation of Programming Languages.
Computer : 14-23, June, 1980.

Boss 771

[Stennig 811

[Wulf 801 Wulf, W.A.

D.4.2.9

